

Lattices

Jiazheng Li

Organization: Tsinghua University

Contact: Foreverlasting1202@outlook.com

Contents

1	SVP, CVP, GapSVP, GapCVP	. 2
	1.1 Introduction	. 2
	1.2 Minkowski's Theorem	. 3
	1.3 Lattice and Complexity Theory	. 4

Lattices Jiazheng Li

1 SVP, CVP, GapSVP, GapCVP

1.1 Introduction

Definition 1.1.1 (Lattice)

Given k linearly independent column vector $b_1,...,b_k \in \mathbb{R}^n$, the lattice generated by them is defined as $\mathcal{L}(b_1,...,b_k) = \left\{\sum_{i=1}^k x_i b_i \mid x_i \in \mathbb{Z}\right\}$. We call $b_1,...,b_k$ a basis of the lattice, k the rank of the lattice, and k the dimension of the lattice. In the matrix form, given a rank k matrix k0 matrix k1 the lattice of k2 is defined as

$$\mathcal{L}(B) = \{Bz \mid z \in \mathbb{Z}^k\}.$$

Remark

Linear subspace but with integer indices.

Theorem 1.1.2

 $\mathcal{L}(B_1)=\mathcal{L}(B_2) \text{ if } \exists\, U\in\mathbb{Z}^{k\times k} \text{ and } \det(U)=\pm 1 \text{ such that } B_1U=B_2.$

 $\textit{Proof.} \ \text{Notice} \ U \in \mathbb{Z}^{\{k \times k\}} \ \text{and} \ U^{-1} = \tfrac{\operatorname{adj}(U)}{\det(U)}, \ \text{then we can prove that} \ \mathcal{L}(B_1) \subseteq \mathcal{L}(B_2) \ \text{and} \ \mathcal{L}(B_2) \subseteq \mathcal{L}(B_1). \quad \Box$

Definition 1.1.3 (Successive Minima)

Let $\overline{B}_n(0,r)$ be the *n*-dimensional ball with the origin as the center, i.e.,

$$\overline{B}_n(0,r) = \{ x \in \mathbb{R}^n \mid ||x||_2 \le r \}.$$

We define the *i*-th successive minima of a lattice $\mathcal L$ to be

$$\lambda_i(\mathcal{L}) = \inf \Bigl\{ r : \dim \Bigl(\operatorname{span} \Bigl(\mathcal{L} \cap \overline{B}_n(0,r) \Bigr) \Bigr) \geq i \Bigr\}.$$

Remark

The shortest vector under linear independence, with the note that the λ_i may be equal.

Definition 1.1.4 (Fundamental Parallelepiped)

We define the fundamental parallelepiped of a lattice \mathcal{L} generated by a basis $B \in \mathbb{R}^{n \times k}$ to be

$$\mathcal{P}(B) = \biggl\{ \sum_{i=1}^k c_i b_i \mid c_i \in [0,1) \biggr\}.$$

Lattices Jiazheng Li

Definition 1.1.5 (determinant)

We define the determinant of a lattice $\mathcal{L} = \mathcal{L}(b_1, b_2, ..., b_k)$ to be

$$\det(\mathcal{L}) \coloneqq \operatorname{vol}(\mathcal{P}(B))$$

We then introduce a general theorem for computing the determinant of a lattice.

Theorem 1.1.6

Given $B \in \mathbb{R}^{n \times k}$, we have

$$\det(\mathcal{L}(B)) = \sqrt{\det(B^T B)}.$$

Moreover, if n = k, we have $\det(\mathcal{L}(B)) = |\det(B)|$.

 $\textit{Proof.} \ \text{Gram Matrix, } \operatorname{vol}(\mathcal{P}(B)) = \sqrt{\det(G)}, \ \text{where} \ G \ \text{denote Gram Matrix and} \ G_{i,j} = b_i^T b_j. \\ \ \Box$

1.2 Minkowski's Theorem

We aim to find some relationship between $\lambda_1(\mathcal{L})$ and $\det(\mathcal{L})$, since $\det(\mathcal{L})$ can be easily computed.

Theorem 1.2.1 (Minkowski's Theorem)

For any lattice \mathcal{L} , we have $0 < \lambda_1(\mathcal{L}) \leq \sqrt{n} \sqrt[n]{\det(\mathcal{L})}$. (For simplicity, we consider the **full rank** case.)

Remark

Let's understand this theorem. For the lower bound, we can use the lattice $\mathcal{L}\left(\begin{pmatrix} \alpha \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \frac{1}{\alpha} \end{pmatrix}\right)$ when $\alpha \to \infty$ to reach it. *For the upper bound, I have no idea now.*

Lemma 1.2.2 (Blichfeldt's Theorem)

Given any n-dimensional lattice Land for any set $S \subseteq \mathbb{R}^n$ such that $\operatorname{vol}(S) > \det(\mathcal{L})$, there must exists $x,y \in S$ s.t. $x = y \pmod{\mathcal{L}}$ and $x - y \in \mathcal{L}$.

Proof. Pigeonhole principle. Notice that there must be two points $x, y \in S$ such that $x \pmod{\mathcal{L}} = y \pmod{\mathcal{L}}$ by shifting vectors to \mathcal{L} .

Definition 1.2.3 (Center-symmetric Sets and Convex Sets)

We say a set S is center-symmetric if $\forall x \in S$ we have $-x \in S$. We say S is convex if $\forall x, y \in S, \lambda \in [0, 1]$, we have $\lambda x + (1 - \lambda)y \in S$.

Lattices Jiazheng Li

Theorem 1.2.4

Given any n-dimensional lattice $\mathcal L$ for any center-symmetric convex set S such that $\operatorname{vol}(S) > 2^n \det(\mathcal L)$, S contains a non-zero $v \in \mathcal L$.

Proof. Construct $2\mathcal{L}$ with $\det(2\mathcal{L}) = 2^n \det(\mathcal{L}) < \operatorname{vol}(S)$, then use Lemma 1.2.2, we can have that there must be two points $x \neq y \in S$ s.t. $x - y \in 2\mathcal{L}$. Since S is convex, $\frac{x - y}{2} \in S$ and S is center-symmetric $\Rightarrow \frac{x - y}{2} \in \mathcal{L}$. \square *Proof of Theorem 1.2.1.* Now, we can prove Theorem 1.2.1.

Consider a hypercube S_0 with side length $\sqrt[n]{\det(\mathcal{L})}$, and S_1 be the smallest ball containing S_0 . Then

$$\forall x,y \in S_1, \|x-y\|_2 \leq \sqrt{n} \sqrt[n]{\det(L)}$$

and

$$\operatorname{vol}(S_1) > \operatorname{vol}(S_0) = \det(\mathcal{L}).$$

Since Lemma 1.2.2, we have $x,y\in S_1$ and $x-y\in \mathcal{L}$, which means there exits a vector $v\in \mathcal{L}$ and $\|v\|_2 \leq \sqrt{n}\sqrt[n]{\det(L)}$, and hence $\lambda_1(\mathcal{L})\leq \sqrt{n}\sqrt[n]{\det(\mathcal{L})}$.

Remark

The upper bound is not tight with some constant, since we choose a hypercube to constrict not a hyperball.

A more interesting thing is the order of upper bound can not be improved, because we can prove there exists a global constant $c \in (0,1)$ such that for all sufficiently large n, there exists an n-dimensional lattice \mathcal{L}_n such that $\lambda_1(\mathcal{L}n) \geq c\sqrt{n} \sqrt[n]{|\det(\mathcal{L}_n)|}$.

1.3 Lattice and Complexity Theory